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Received 23 August 1988, in final form 3 February 1989 

Abstract. The study of the universal finite-size scaling amplitudes of interfacial free energies 
in Monte Carlo simulations provides an accurate method of determining the critical 
temperature and the universality class of phase transitions. These universal amplitudes 
can replace the critical exponents to identify universality classes. We use Bennett’s optimisa- 
tion scheme for the calculation of the interfacial free energies in Monte Carlo simulations. 
Tests for the Ising and three-state Potts model confirm the effectiveness of this method. 

Finite-size scaling (FSS) is an important tool in numerical investigation of critical 
phenomena (Nightingale 1976, 1982, Barber 1983). In particular it has been applied 
very successfully to two-dimensional models on semi-infinite lattices in the context of 
transfer matrix calculations. Recently the type of analysis that employs the universality 
of the finite-size scaling amplitudes of correlation lengths and interfacial free energies 
(Luck 1982, Cardy 1984) has improved the numerical accuracy of the transfer matrix 
method considerably (Nightingale and Blote 1983, Blote and den Nijs 1988). However, 
transfer matrix calculations are limited to relatively small strip widths L; the required 
computer memory increases exponentially with L, as q L  with q the number of states 
per site or per bond. Therefore the transfer matrix method is not an adequate tool to 
study systems with large q, nor systems that require a large lattice to exhibit the structure 
of their ordered phases properly, e.g. commensurate phases with a large unit cell or 
incommensurate phases (for a review, see den Nijs 1988). Monte Carlo (MC) simula- 
tions are more suited for these types of problems. In this paper we introduce universal- 
amplitude finite-size scaling .to MC simulations. 

Consider a L,  x L2 lattice. We investigate the FSS behaviour of the interfacial free 
energies 7 which are defined as the difference between the free energies per unit length 
for different boundary conditions. For example, in the Ising model the free energy of 
an interface (Bloch wall) is equal to the difference in free energy between a system 
with periodic and antiperiodic boundary conditions. The interfacial free energy is 
finite in the ordered phase, vanishes in the disordered phase, and scales at criticality as 

7(L,, L, )=A(S) /L*  (1) 
with s = L2/ L,  the aspect ratio. This is an elementary consequence of the scaling 
postulate (Nightingale 1976, 1982, Privman and Fisher 1984). The amplitudes A ( s )  
are universal and vary continuously with the aspect ratio s. 

The main purpose of this paper is to point out and illustrate that also in MC 

simulations it pays to focus on these universal amplitudes. To identify the universality 
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class of a phase transition from the FSS behaviour of e.g. the specific heat (Landau 1976) 

C ( L , ,  L2)-B(s)L:YT-D 

with D = 2 being the dimension of the system, one needs to fit two parameters: the 
amplitude B ( s )  which is not universal, and the thermal critical exponent y, which is 
universal (one needs to subtract a regular background term as well). Compare this 
with (1). The universal amplitudes require only a one-parameter fit. This becomes 
even more advantageous in MC simulations than in transfer matrix calculations. In 
the transfer matrix method free energies can be obtained numerically with machine 
accuracy, and therefore both types of fits work well. In MC simulations ensemble- 
averaged quantities like order parameters, specific heats, and interfacial free energies 
have a typical accuracy about 0.1 O/O, due to statistical fluctuations, for the relatively 
small system sizes we need consider. 

Can these universal amplitudes replace the critical exponents as the parameters 
that identify the universality class of a phase transition? Is it possible to deduce the 
values of the critical exponents from the values of the universal amplitudes? Otherwise 
one still needs to perform a two-parameter fit of the first derivative of 7 with respect 
to temperature, d q / d T -  A(s)LP-I (or magnetic field), to determine the critical 
exponents. The relation between the universal amplitudes and the critical exponents 
is simple in the limit of semi-infinite strips, i.e. in transfer matrix calculations: A(0) = 
27rx with x the critical dimension of the operator conjugate to the interface imposed 
by the boundary condition. For example, for cyclic boundary conditions (antiperiodic 
boundary conditions in the Ising model) x is equal to the magnetic critical exponent 
x = x H  (Cardy 1984, Park and den Nijs 1988). 

The connection between critical exponents and universal amplitudes becomes more 
complex on a finite-by-finite lattice (a torus), i.e. in MC simulations. Park and den 
Nijs (1988) list the possible boundary conditions for the 2~ q-state Potts model on a 
torus, and derive the exact values of A ( s )  for all aspect ratios s. We use the so-called 
extended-scaling method (den Nijs 1979, 1983, 1984, Nienhuis 1987). The exact values 
of the critical exponents of most 2~ phase transitions have been determined in recent 
years by extended scaling (for a review, see Nienhuis 1987) and by conformal invariance 
(Belavin et a1 1984, Friedan et a1 1984; for a review see Cardy 1987). For every 2~ 

universality class where these methods can be applied, it will be possible to determine 
the exact values of the universal amplitudes as well. 

We will not compare the accuracy of our test results with Monte Carlo FSS results 
that use (2), but rather with those of the more sophisticated Monte Carlo real-space 
renormalization (MCRG) method (Swendsen 1979, 1982). However it should be noted 
that real-space RG methods are unsuited to several types of problems to which we 
intend to use our method later, e.g. commensurate-incommensurate transitions (the 
domain wall periodicity varies continuously and therefore is incompatible with a 
specific fixed block-spin periodicity). 

MC algorithms for the interfacial free energies have been developed by several 
authors (Bennett 1976, Mon and Jasnow 1984, 1985, Mon and Nightingale 1985). We 
use the optimisation scheme proposed by Bennett (1976), and employ gauge invariance 
to reduce the statistical errors in the MC results. Consider two systems with Hamil- 
tonians Ho and HI. The free energy difference between the two systems, A F  = F1 - Fo, 
can be written in terms of ensemble averages as 
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where W is arbitrary. Bennett (1976) showed that W-I = Zo exp( - H I )  + 2, exp( -Ho) 
is the optimal choice for the function W which minimises the statistical errors under 
the Gaussian-noise assumption of ensemble-averaged quantities. Zo and Z1 are the 
partition functions of the two systems. With this choice, (3) can be written as 

(f( Hi - HO - A F ) )  H~ = (f( Ho - HI + A F ) ) H ,  (4) 
where f(x) = 1/( 1 +ex) .  This is an implicit equation for AF. We run two MC simula- 
tions; one with Hamiltonian Ho and one with HI.  During both simulations we store 
the probability distribution P ( A H ) ,  with A H  = HI - Ho. Afterwards AF follows easily 
by solving the equation 

C P o ( h ) f ( h - A F ) = C  Pi(h)S(AF-h). (5) 
h h 

This method works well when there is sufficient overlap between the two ensembles. 
In our case Ho and HI differ only by boundary conditions. 

Consider the ferromagnetic q-state Potts model with a spin a ( n ,  m )  on each site 
of a square lattice, and nearest-neighbour interactions -KS,,,. . In the vertical direction 
the boundary condition is periodic, a( n, m + L,)  = a( n, m ) .  In the horizontal direction 
the boundary condition is periodic, a( n + L 2 ,  m )  = a( n, m )  in the case of Hamiltonian 
H,, while it is cyclic, a ( n  + L1,  m )  = a ( n ,  m )  + 1 in the case of HI. The latter is 
equivalent to periodic boundary conditions but with modified interactions -  KC^,,^^+^ 
instead of -KC?,,, at all bonds that cross a seam that runs across the lattice in the 
vertical direction (see figure 1). So AH is equal to K6,, .-  K6,,,t+1 summed over all 
bonds that cross the seam. There are many more types of possible boundary conditions, 
e.g. twisted ones as discussed in our paper (Park and den Nijs 1988). They are equally 
interesting, but here we restrict ourselves to cyclic boundary conditions. 

Figure 1. Cyclic boundary conditions for a Potts model on a L, x L,  lattice. The vertical 
broken line represents the seam where the interactions are modified as - K6,,,,, . 

The cyclic boundary condition induces an interface in the low-temperature phase. 
The interfacial free energy is defined as the difference in free energy per unit length 
between the two systems 

(6) ~ ( h ,  LJ = A F / L i  =(1/L1) ln(Zo/Zi)* 
Gauge invariance implies that the shape and the location of the seam is arbitrary (Park 
and den Nijs 1988). We consider only seams that form straight vertical lines, and 
denote the Hamiltonian HI with a seam at position n = x by H ( x )  (figure 1 ) .  We use 
the remaining gauge invariance (the position of the seam) to reduce the statistical error 
in AF, We sum over all possible locations of the seams, 

L2 L2 

( ~ ( H ( x ) - H o - A F ) ) H , =  C ( f ( f f ~ - H ( x ) + A F ) ) ~ , x , .  (7) 
x = 1  x = 1  
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The summation on the left-hand side can be moved inside the average, but the one 
on the right-hand side seems to involve L2 different MC simulations. It is easy to show 
by gauge invariance that the seams of the Hamiltonians used in the ensemble and 
those inside the average can be separated as 

W H O -  H(X)+AF))H(X)  = ( f ( H ’ ( x )  - H o + w ) H , X , ,  (8) 

if x # xo.  The seams in H ‘ ( x )  and H ( x o )  are now at different positions. The prime 
in H ’ ( x )  indicates that at its seam the interactions are modified in the opposite direction, 
as K6u,,,-1 instead of K S , , r + l .  Equation (8) allows us to evaluate (7) from two MC 
simulations only; one with Hamiltonians Ho and one with H ( x o ) .  This way of averaging 
over all seam positions enhances the accuracy of the MC results significantly, especially 
for large lattices. 

First, we test our method to the 2~ Ising model on a square lattice. In order to 
determine the critical temperature and the universal amplitude, we use the conventional 
extrapolation method used in transfer matrix calculations (Nightingale 1982, Nightin- 
gale and Blote 1983, Blote and den Nijs 1988). Interfacial free energies 7 are calculated 
on the 4 x 4  and 6 x 6  lattice at temperatures exp(-K)=0.41 and 0.42. In the 
(exp(-K), 7L2)  plane, we connect the points with the same lattice size by straight 
lines. The temperature exp( - K )  and the amplitude 7L2 at the crossing point of these 
two straight lines are recorded. Next, interfacial free energies are calculated on the 
6 x 6 and 8 x 8 lattice at the temperature of the previous crossing point and one of the 
two initial temperatures, 0.4 or 0.42. We iterate the above procedure. 

We consider lattice sizes 4 x 4, 6 x 6, 8 x 8, and 10 x 10. We use respectively 2,3,4,  
and 5 independent lo6 MC steps per spin (MCS) for the calculation of the interfacial 
free energy at a given temperature. The initial lo4 MCS are discarded to reach equili- 
brium. Statistical errors in the values of the 7 ( L 2 )  are about 0.1-0.15%. We established 
these error estimates by comparing results for independent MC runs. 

The temperatures and the amplitudes of the three crossing points using the above 
iteration method are plotted in figure 2 ( a )  and ( b ) .  Extrapolations of these points to 
11 L, = 0 using the expected type of asymptotic behaviour, as described below, yield 
that exp(-K,) = 0.4142 * 0.0006 and A(s = 1) = 0.987 *0.016. The exact values of the 
critical temperature and the universal amplitude at aspect ratio s = 1 are exp(-K,) = a- 1 and A ( l )  = In( 1 +23’4) = 0.9865 (Park and den Nijs 1988). The Ising model is 
special, because it is exactly soluble on a finite-by-finite lattice (Kaufman 1949, 
Ferdinand and Fisher 1969). Therefore not only these asymptotic values, but also the 
exact values of 7 ( L 1 ,  L,) at all values of L ,  and L2 are known. Our numerical results 
are in excellent agreement with these exact values. 

In the limit L 2 + q  the crossing points asymptotically must approach the exact 
values of the critical temperature and the universal amplitude, exp( -Kc)  and A(s), as 

exp( K *) - exp( K , )  - L ; ” ~ + y l r  (9) 
and 

where K* and 7* are the values of temperature and interfacial free energy at the 
crossing points. yT is the thermal exponent and yi, the leading correction-to-scaling 
exponent. Equations (9) and (10) follow from elementary scaling theory. It is assumed 
that the temperature scaling field does not vary with N. This is a consequence of 
self-duality at the fixed point, and also follows from conformal theory. 
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Figure 2. Convergence of the crossing points in the k ing  model. The temperatures ( a )  
and the amplitudes (b) of the crossing points are plotted as functions of l /L2.  Arrows 
indicate the exact values for the critical temperature ( a )  and the universal amplitudes ( b ) .  
The full lines between the Monte Carlo data are guides to the eye. 

It is useful to comment on how well (9) and (10) work in transfer matrix finite-size 
scaling calculations in semi-infinite strips for the Ising model and the three-state Potts 
model (den Nijs and Park, unpublished; see also e.g. Blote and den Nijs 1988). In 
the Ising model it is known that the leading irrelevant exponent has the value yir = -2. 
Indeed the corrections to scaling in the semi-infinite case follow (9) and (10) with this 
value of yir very accurately already at small strip widths N < 10. In the three-state 
Potts model the convergence is less rapid. If one fits the numerical transfer matrix 
data at successive crossing points to the form (9) and (lo),  and then extrapolate these 
approximants for the critical exponents yT and yir,  one finds indeed the known exact 
values of the temperature and leading irrelevant critical exponents y ,  = 4 and yir = - g, 
each with an accuracy better than a few per cent. This confirms numerically that (9) 
and (10) are correct. However, in the three-state Potts model the asymptotic scaling 
region where only one irrelevant operator dominates has not been reached for strip 
widths N 4 10. We expect the presence of a subdominant irrelevant operator with 
exponent yi, = -2 with a large amplitude. The Potts model can be mapped onto the 
BCSOS model (see e.g. Park and den Nijs 1988) and this surface roughening model is 
likely to have a large correction to scaling associated with the Gaussian operator (V4)4 
similar to the restricted solid-on-solid model where this has previously been found to 
be the case numerically (den Nijs 1985b). Indeed a fit of the transfer matrix results 
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to the version of (9) and (10) with two irrelevant operators, assuming the values 
y,r,l = -2 and ylr,2 = - 2 ,  leads to stable amplitudes, with an amplitude of the ylr,* = -2  
term which is ten times larger than that of the y,,,, = - $  term. 

On the torus the corrections to scaling in the crossing point temperatures and 
universal amplitudes must be of the same order of magnitude as in semi-infinite strips, 
but the statistical error in the MC data prevents these types of very detailed extrapola- 
tions. In principle one could increase the length of the MC runs until the statistical 
error is small enough to make an unbiased extrapolation possible. Our MC runs are 
not long enough yet for that. We obtained the above mentioned results for the Ising 
model, exp(-K,) = 0.4142*0.0006 and A(s  = 1) = 0.987i0.016, by extrapolating the 
MC results, using (9) and (10) with y,,= -2.0. In other words, this type of accuracy, 
with our statistical error, requires prior knowledge of the order of magnitude of the 
critical exponents. For example, a 1/ N extrapolation to the crossing point temperatures 
can be ruled out. In cases where the orders of magnitude of yT and y, ,  are completely 
unknown, one has several options. First, to determine the crossing points at finite N 
with more accuracy by running more MC simulations at different temperatures. Next, 
study larger lattice sizes or to improve the statistics of the smaller sizes. Our results 
confirm that the asymptotic scaling region, dominated by the dominant irrelevant 
operators, is reached at the same lattice sizes as in semi-infinite lattices. This suggests 
that one should opt for improving the statistics at small lattice sizes. Notice that the 
system sizes that we consider, sizes customary in transfer matrix calculations, are quite 
small compared with what is customary in Monte Carlo simulations. 

In many cases the critical temperature exp(-K,) is already known, for example 
from duality. Then it is not necessary to determine crossing points. The universal 
amplitude can then be obtained by extrapolating 77(L2) at exp(-K,). Figure 3 shows 
that this also works very well in our MC method. We show the exact curve and our 
numerical results. In figure 3 the only uncertainty is the statistical error in the values 
of 7 ( L 2 ) .  Now the lengths of the MC runs that we consider (5 x lo6 MCS) are sufficient 
to make an unbiased extrapolation, using (lo),  feasible. We find A ( s )  = 0.987* 0.003, 
and the numerical value of ylr is consistent with the exact value y,, = -2 .  

If the universality class is known, for example, from the symmetry of the system, 
then the critical temperature can be determined with high accuracy from the knowledge 

0.98 

0.96 

0.94 / 
0 0.05 0.10 0.15 0.02 0.25 0.30 

L ;' 
Figure 3. Universal amplitudes of the Ising model. Monte Carlo data at L, = 4,6,8 and 
10 are consistent with the exact curve (the full curve) within error bars. 
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of the value of the universal amplitude A ( s ) .  We obtain exp(-K,) = 0.4142*0.0001; 
see figure 4. 

The 2~ Ising model is special; the model is exactly soluble and the structure of the 
corrections to scaling is particularly simple (Blote and den Nijs 1988). Therefore we 
also tested our method on the three-state Potts model. In figure 5 ,  we plot the numerical 
values of vLz at the critical temperature as function of 1/L, for the same lattice sizes 
as before for aspect ratios s = 1, 0.75 and 0.5. In this case we needed MC runs twice 
as long as in the Ising model to obtain the same accuracy for the interfacial free 

0.99 

0.98 

0.97 

0.96 LLLL 
0 

T 4 

l ~ , , , l , , , , l , , , , l , , , , I , , , , 1  
0.05 0.10 0.15 0.20 0.25 0.30 

L;1  
Figure 4. The critical temperature of the Ising model. Monte Carlo data for L, = 4,6, 8 
and 10 at temperatures exp(-K) = 0.4140, 0.4142 and 0.4144 are shown with error bars. 
The full lines between the Monte Carlo data are guides to the eye. The line at the critical 
temperature must approach the exact value of the universal amplitude A(s = 1) = 0.9865 
(indicated by the arrow) in the limit L,+co. The line at exp(-K)=0.4140 (0.4144) 
approaches clearly above (below) the arrow. 

I " " I " " I " " i  

s = 0.75 

1.10 

0 0.1 0.2 0.3 0.4 

L ;I 

Figure 5. Universal amplitudes of the three-state Potts model. Arrows indicate the exact 
values of universal amplitudes at aspect ratios s = 1,0.75 and 0.5. The full line between 
the Monte Carlo data is a guide to the eye. 
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energies 7 ( L 2 ) .  We obtained the values of A(s) with an accuracy of 0.5% by extrapola- 
tion to l /Lz  = 0, using (10). As expected, the effective correction-to-scaling exponent 
is between yir,l = - 2  and yir,Z = -2.0 (see above). The arrows along the vertical axis 
in figure 5 represent the exact values of A(s) (Park and den Nijs 1988). The extrapolated 
numerical values are compared in table 1 with the exact values. Notice that the 
amplitudes of the corrections to scaling change sign as functions of the aspect ratio 
(the changes of slope in figure 5 ) .  

In figure 6, we plot the exact universal amplitude A(s) as function of the aspect 
ratio s of the Ising and three-state Potts model (Park and den Nijs 1988) together with 
our MC results. 

Our results compare well with those of other methods. Monte Carlo renormalisation 
(MCRG) (Swendsen 1979) is one of the most accurate methods to determine critical 
exponents by means of MC simulations. Our results have a similar accuracy to those 
of MCRG (Swendsen 1982), especially the results obtained assuming knowledge of the 
exact value of the critical temperature (the MCRG results with which we compare used 
this information too). The algorithm that we used to calculate the interface free energies 
can certainly be improved in the future. 

In this paper, we introduced a new Monte Carlo method of determining critical 
temperatures and universality classes of phase transitions. We intend to use this method 

Table 1. Universal amplitudes of the three-state Potts model for several values of the aspect 
ratio s. The values in the second column are extrapolations to L, =CO of the Monte Carlo 
data. The exact values in the third column are from Park and den Nijs (1988). 

S Monte Carlo Exact values 

1 1.190 f 0.006 1.18744 
0.75 1.1 13 f 0.005 1.1 1384 
0.50 0.980 * 0.006 0.98066 

Alsl 

1.2 

1.1 

1.0 

0.9 

0.8 

0.7 
0 0.5 1 .o 1.5 2 .o 2.5 

5 

Figure 6. Universal finite-size scaling amplitudes for the Ising and three-state Potts model 
as function of the aspect ratio s. The full curves are the exact curves obtained by Park 
and den Nijs (1988). 
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for systems with complex critical behaviour such as the helical and chiral Potts models 
(see Park et a1 1986) and antiferromagnetic clock models (den Nijs 1985a). Here we 
tested and confirmed the feasibility of this method by applying it to simple models 
like the Ising and the three-state Potts model. 

Next, we will test it on more complex systems but with still simple critical behaviours 
like the triangular Ising lattice-gas model and check whether the results still compare 
favourably with those of other numerical methods. 
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